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1. Introduction

It was observed in [1] that there is a one to one correspondence between the quasi-normal

frequencies of linear perturbations in a 3-dimensional BTZ black hole background and the

poles, in momentum space, of the retarded propagator of the respective dual operators

in the boundary conformal field theory. This correspondence is conjectured to hold also

in higher dimensions as a consequence of the AdS/CFT correspondence. This has lead

to quantitative predictions about the hydrodynamic regime of strongly coupled large N

supersymmetric quantum field theory [2].

The observation made in [1] can be generalized to tensor perturbations when consider-

ing toplogically massive gravity [3] within the AdS/CFT correspondence, either as a theory

of pure gravity [4] or embedded into string theory [5, 6]. For generic values of the mass

m the graviton becomes propagating in AdS3 and the corresponding quasi-normal mode

spectrum has been constructed recently in [7]. For m = 1, the chiral point, the modes

found in [7] are pure gauge and by themselves presumably have no physical interpretation.

However, it was pointed out in [9, 10] that, at the chiral point, a new logarithmic solution

arises which is propagating.

In this note we construct the infinite tower of quasi-normal modes corresponding to

this new mode and discuss its relation with the poles of the retarded correlators in loga-

rithmic conformal field theory.1 The key observation is that the presence of logarithmic

solutions in the quasi-normal mode spectrum is related to the existence of double poles

in the momentum representation of the retarded correlation function of the correspond-

ing logarithmic operator in conformal field theory. This relation appears to be generic

and can be understood in terms of a simple reconstruction formula of quasi-normal modes

presented below. Nevertheless, in view of the physical consistency of the specific model

considered here we should mention that topologically massive gravity without truncation

may lead to a pathological quantum theory since either the linearized graviton perturba-

tion, or the BTZ black holes have been found to have negative energy depending on which

sign one chooses for Newton’s constant [8 – 10]. However, these issues do not affect the

correspondence established in this paper.

1The relevance of this mode was emphasized to us by Daniel Grumiller.
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2. Quasi-normal modes

2.1 Algebraic structure

There is a simple algebraic structure relating the massive graviton solution for generic mass

m > 1 to the logarithmic solution at m = 1. To describe it we consider the equation for

motion for tensor linear perturbations hµν in the transverse trace-less gauge

(∇2 + 2)
[

ǫ αβ
µ ∇αhβν +mhµν

]

= 0 . (2.1)

Introducing the operator Dm through

Dmhµν = ǫ αβ
µ ∇αhβν +mhµν , (2.2)

the 3rd order equation (2.1) can be written as the product of three commuting first order

operators [8]

D+1D−1Dmhµν = 0 . (2.3)

The solutions of D−1D+1hµν = 0 describe a massless graviton in 2+ 1 dimensions which is

known not to propagate. Suppose now that hµν(m) is a solution to the first order equation

Dmhµν = 0 . (2.4)

For m = 1 this solution becomes degenerate with the massless graviton and thus becomes

pure gauge. One way to see this is to note that

D−mDmhµν = (∇2 + 3 −m2)hµν = 0 . (2.5)

One then shows [7] that the change in the Riemann tensor produced by the metric pertur-

bation satisfying (2.5) is given by

δR
µν

αβ =
(1 −m2)

2
(hµ

αδ
ν
β + hν

βδ
µ
α − h

µ
βδ

ν
α − hν

αδ
µ
β ) . (2.6)

On the other hand, it was shown in [10] that for m = 1 a new logarithmic solution h̃µν

to (2.1) appears with

h̃µν = ∂mhµν(m)|m=1 . (2.7)

To continue we note that ∂m commutes with all geometric differential operators that do

not depend on m. This implies, in particular, that

∇µh̃µν = 0 . (2.8)

Furthermore we can recover hµν in terms of h̃µν since

D1h̃µν = −h(1)µν . (2.9)

The change in the Ricci tensor produced by h̃µν is then given by

δRµ
ν = −hµ

ν . (2.10)

which shows, in particular, that h̃µν is not pure gauge.

– 2 –
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2.2 Logarithmic quasi-normal modes

It was shown in [7] that in topologically massive gravity the quasi-normal modes for massive

gravitons in the BTZ black hole background with metric (u = τ + φ, v = τ − φ)

ds2 =
1

4

(

du2 − 2 cosh(2ρ)dudv + dv2
)

+ dρ2 , (2.11)

are descendents of a ”chiral highest weight” solution, h(m)µν , to the first order equa-

tion (2.4) satisfying L1hµν = 0 or L̄1hµν = 0 (but not both). The generators L±1 and L0

form a representation of the Lie algebra SL(2, R),

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 . (2.12)

in the black hole background through

L0 = −∂u

L−1 = e−u

(

−
cosh(2ρ)

sinh(2ρ)
∂u −

1

sinh(2ρ)
∂v −

1

2
∂ρ

)

(2.13)

L1 = eu
(

−
cosh(2ρ)

sinh(2ρ)
∂u −

1

sinh(2ρ)
∂v +

1

2
∂ρ

)

.

Similarly, L̄0, L̄1, L̄−1 are obtained from (2.13) by substituting u→ v and v → u.

For L1hµν = 0 the descendents

h(m)(n)
µν = (L−1L̄−1)

nh(m)µν .

generate the complete tower of quasi-normal modes for fixed m with left-moving quasi-

normal frequencies

ωL
n = −k − 2i(hL(m) + n) , n ∈ N , (2.14)

and hL(m) = m
2 − 1

2 . Similarly, L̄1hµν = 0 leads to the quasi-normal mode spectrum for the

right-moving quasi-normal frequencies. For m = 1, however, the solution of (2.4) becomes

pure gauge an can thus not be a quasi-normal mode. We will now show that at the chiral

point the descendents of h̃µν form a infinite tower of quasi-normal modes instead.

It is clear from the previous subsection that L1h̃µν = 0. Thus h̃µν is chiral highest

weight. Furthermore, since Lk and L̄k commute with the equation of motion [7],

h̃(n)
µν = (L̄1L−1)

(n)h̃µν

satisfies the third order equation (2.1). All modes are ingoing at the horizon since hµν

has this property. Finally all modes, except the highest weight mode h̃µν itself, fall-off

exponentially in time and large radial distances. Concretely we have2 [10]

h̃µν = −y(τ, ρ)ψµν , (2.15)

2In what follows we assume vanishing angular momentum for the quasi-normal modes to avoid clutter.

Including it is not a principle obstacle.

– 3 –
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where y(τ, ρ) = τ + log[sinh(ρ)], and [7]

ψµν =







0 0 0

0 1 2
sinh(2ρ)

0 2
sinh(2ρ)

4
sinh2(2ρ)






. (2.16)

Since this mode is growing in time and ρ one might be tempted to disqualify it as a quasi-

normal mode. On the other hand, all components of the corresponding perturbation of the

Ricci-tensor

δRµ
ν = −ψµ

ν , (2.17)

fall-off exponentially. It can be shown, furthermore that the energy flow,
√

|g|T ρ
τ for this

mode falls off exponentially in ρ. We postpone the discussion of the linear growth in τ to

next section when discussing the relation with conformal field theory.

The first descendent h̃
(1)
µν takes the form

h̃(1)
µν =

(

1

2
− y(τ, ρ)

)

ψ(1)
µν , (2.18)

where

ψ(1)
µν = L̄−1L−1ψµν =

2e−2τ

sinh2(ρ)









0 1 2
sinh(2ρ)

1 1 2 cosh(ρ)
sinh(ρ)

2
sinh(2ρ)

2 cosh(ρ)
sinh(ρ) 41+2 cosh(2ρ)

sinh2(2ρ)









. (2.19)

This is a genuine gravitational quasi-normal mode with exponential fall-off in ρ and τ . In

view of a conformal field theory interpretation of h̃(1) we should note that the vv-component

of the metric is not dominant at large ρ which in turn leads to difficulties in identifying the

dual operator in the CFT. The curvature perturbation induced by h̃(1) is then obtained

using (2.10) as

δRµ
ν = −(ψ(1))µν . (2.20)

The structure of the higher modes h̃
(n)
µν with n > 2 is similar with e−2τ replaced by e−2nτ .

To summarize, topologically massive gravity at the chiral point has an infinite tower of

quasi-normal modes with quasi-normal frequencies (restoring the k dependence)

ωL
n = −k − 2in , n ∈ N . (2.21)

A qualitatively new feature of these modes is the appearance of a linear dependence in

time of (2.15), (2.18) on top of the exponential decay in time. In the next section we will

see that this feature has a natural explanation in logarithmic conformal field theory. The

same analysis can be done for the right-moving modes found in [7] producing the second

set of the quasi-normal modes.

– 4 –
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3. Relation to logarithmic CFT

The simplest version of a logarithmic conformal field theory (see e.g. [11] for a review),

which is sufficient for our purpose arises in the presence of two operators C and D with

degenerate eigenvalue of L0 such that

L0|C >= h|C > , L0|D >= h|D > +|C > . (3.1)

The 2-point functions of these operators are then given by

< C(x)C(0) > = 0

< C(x)D(0) > =
c

x2h
(3.2)

< D(x)D(0) > =
1

x2h
[a− 2c log(x)] ,

respectively. Note that (3.1) does not uniquely fix C and D. In particular D′ = D + αC

satisfies (3.1). This freedom can be used to adjust the constant a to any suitable value.

In view of the quasi-normal modes we will be interested in the location an the nature

of the poles, in momentum space, of the retarded correlators GCC
R (t, σ), GCD

R (t, σ) and

GDD
R (t, σ) in finite temperature conformal field theory. Now, GCD

R (t, σ) is identical with

that of the two point function in ordinary conformal field theory. Its momentum space

representation can thus be inferred from that of the commutator whose pole structure is

that of (see [1] for details)

D̄DC(p+) ∝ Γ (hL + ip+) Γ (hL − ip+) , (3.3)

where p± = 1
2 (ω ± k). This function has poles in both the upper and lower half of the

ω-plane. The poles lying in the lower half-plane are the same as the poles of the retarded

correlation function GCD
R (t, σ). Restricting the poles of (3.3) to the lower half-plane, we

find two sets of simple poles

ωL = −k − 2i(n + hL) . (3.4)

where n takes the integer values (n = 0, 1, 2, . . .). This set of poles characterises the decay

of the perturbation on the CFT side.

Next GDD
R (t, σ) can be inferred as in [12] noting that

< D(x)D(0) >= ∂h < C(x)D(0) > , (3.5)

thus

D̄DD(p+) ∝ Γ′ (hL + ip+) Γ (hL − ip+)

+Γ (hL + ip+) Γ′ (hL − ip+) . (3.6)

Again, only the poles in the lower half plane are relevant. We then conclude that the

momentum space representation of GDD
R (t, σ) has double poles while that of GCD

R (t, σ) has

simple poles at the same location.

– 5 –
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We will argue below that it is precisely these double poles that are responsible for the

linear time dependence of the corresponding quasi-normal mode. Before doing so, however,

we need to assign the bulk perturbation to the operators C and D. This proceeds in close

analogy with the analysis presented in [12]. For m > 1 the tensor perturbation h(m)µν is

dual to a non-degenerate boundary operator C with conformal weight hL = m−1
2 . At the

chiral point, m = 1 the perturbation h(m)µν becomes pure gauge. On the other hand (3.1)

together with L1D = 0 imply for the corresponding bulk perturbation ΦD [12]

ΦD = (y(τ, ρ) + α)hµν (3.7)

which is just the definition of h̃µν . We then conclude that h̃µν is the bulk perturbation for

the logarithmic partner of D agreement with the conclusion reached in [10].

Let us now finally explain the linear time dependence in h̃µν . For this we notice that

the lowest lying quasi-normal mode can be reconstructed for a given boundary correlation

function as

hµν = ψµν

∮

C

dωe−i(ωτ+kφ)f(ρ)D̄(p+) (3.8)

where the contour is around the pole of D̄ closest to the real axis and the function f(ρ) =

sinh(ρ)−iω cosh(ρ)−ik determines the extension of hµν into the bulk.3 Now, if D̄(p+) has a

simple pole then (3.8) reproduces the tensor perturbation hµν . On the other hand, if D̄(p+)

has a double pole as is the case for the logarithmic operator D, then (3.8) reproduces h̃µν

with just the right dependence on τ and ρ. This shows that the linear time dependence

in h̃µν is related to the fact that the spectral density of the retarded boundary correlation

function has a double pole. In particular, the highest weight mode (2.15) which grows

linearly in time can be thought of a ”quasi-normal mode” with zero quasi-normal frequency

corresponding to a double pole on the real line.
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